Imbalanced evolving self-organizing learning

نویسندگان

  • Qiao Cai
  • Haibo He
  • Hong Man
چکیده

In this paper, a hybrid learning model of imbalanced evolving self-organizing maps (IESOMs) is proposed to address the imbalanced learning problems. In our approach, we propose to modify the classic SOM learning rule to search the winner neuron based on energy function by minimally reducing local error in the competitive learning phase. The advantage of IESOM is that it can improve the classification performance through obtaining useful knowledge from the limited and underrepresented minority class data. The positive and negative SOMs are employed to train the minority and majority class, respectively. Based on the original minority class, the positive SOM evolves into a new stage that might discover novel knowledge. The purpose of convergent evolution is to recurrently search the fitness value via minimal mean quantization error in the feature space, which can motivate the offspring individuals to move toward the center of positive SOM so as to form more explicit boundary. The iterative learning procedure is used to adaptively update the incremental feature maps and create more minority instances to facilitate learning from imbalanced data. The effectiveness of the proposed algorithm is compared with several existing methods under various assessment metrics. & 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An unsupervised self-organizing learning with support vector ranking for imbalanced datasets

The aim of computational learning algorithm is to establish grounds that work for any types of data, once and for all. However, majority of the classifiers have their base from balanced datasets. This paper discusses the issues related to imbalanced data distribution problem and the common strategy to deal with imbalance datasets. We propose a model capable of handling imbalance datasets well i...

متن کامل

Using Self-organizing Maps for Binary Classification with Highly Imbalanced Datasets

Highly imbalanced datasets occur in domains like fraud detection, fraud prediction, and clinical diagnosis of rare diseases, among others. These datasets are characterized by the existence of a prevalent class (e.g. legitimate sellers) while the other is relatively rare (e.g. fraudsters). Although small in proportion, the observations belonging to the minority class can be of a crucial importan...

متن کامل

Evolving Self-Organizing Maps for On-line Learning, Data Analysis and Modelling

In real world information systems, data analysis and processing are usually needed to be done in an on-line, self-adaptive way. In this respect, neural algorithms of incremental learning and constructive network models are of increased interest. In this paper we present a new algorithm of evolving self-organizing map (ESOM), which features fast one-pass learning, dynamic network structure, and ...

متن کامل

DUNEDIN NEW ZEALAND Evolving Self-Organizing Maps for On-line Learning, Data Analysis and Modelling

In real world information systems, data analysis and processing are usually needed to be done in an on-line, self-adaptive way. In this respect, neural algorithms of incremental learning and constructive network models are of increased interest. In this paper we present a new algorithm of evolving self-organizing map (ESOM), which features fast one-pass learning, dynamic network structure, and ...

متن کامل

Facial Emotion Ranking Under Imbalanced Conditions

The aim of emotion recognition is to establish grounds that work for different types of emotions. However, majority of the classifiers have their base from balanced datasets. There are few works that attempts to address how to approach facial emotion recognition under imbalanced condition. This paper discusses the issues related to imbalanced data distribution problem and the common strategy to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurocomputing

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2014